preparation of this manuscript. This work was supported by N.I.H. grants CA-12159 and DE-02670.

References

Busing, W. R. (1971). Acta Cryst. A 27, 683-684.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Oak Ridge National Laboratory Report ORNL-TM-305.
Cook, W. J. \& Bugg, C. E. (1973a). Carbohydr. Res. 31, 265-275.
Cook, W. J. \& Bugg, C. E. (1973b). J. Amer. Chem. Soc. 95, 6442-6446.
Cook, W. J. \& Bugg, C. E. (1975). Biochim. Biophys. Acta, 389, 428-435.
Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A26, 71-83.

Craig, C. D., Stephenson, N. C. \& Stevens, J. D. (1974). Cryst. Struct. Commun. 3, 277-281.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Ibers, J. A. (1969). Acta Cryst. B25, 1667-1668.
International Tables for X-ray Crystallography (1962). Vol. III, pp. 202-211. Birmingham: Kynoch Press.
Johnson, C. K. (1965). ORTEP. Oak Ridge National Laboratory Report ORNL-3794.
Klyne, W. \& Prelog, V. (1960). Experientia, 16, 521-523.
Rosenstein, R. D. (1968). Amer. Cryst. Assoc. Meeting, Buffalo, New York, August 11-16, 1968. Abstract KK2.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Wehe, D. J., Busing, W. R. \& Levy, H. A. (1962). ORABS. Oak Ridge National Laboratory Report ORNL-TM-229. Wilson, A. J. C. (1942). Nature, Lond. 150, 151-152.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

1-Benzyl-2-phenyl-3-hydroxy-4,5-dimethylphosphol-2-ene 1-Oxide

By Dick van der Helm,* D. M. Washecheck, John E. Burks and S. E. Ealick
Department of Chemistry, University of Oklahoma, Norman, Oklahoma 73069, U.S.A.

(Received 23 September 1975; accepted 24 September 1975)

Abstract

C}_{19} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{P}\), m.p. 181-183 ${ }^{\circ}$, orthorhombic, space group Pc2, $b, a=8 \cdot 1319$ (6), $b=8.5671$ (7), $c=$ 24.081 (3) $\AA, \quad Z=4, \quad M=312 \cdot 33, \quad D_{x}=1 \cdot 236, \quad D_{m}=$ $1.236 \mathrm{~g} \mathrm{~cm}^{-3}$. The title compound exists in the enol form having a C(2)-C(3) bond length of $1.357 \AA$. The stereochemistry at P and $\mathrm{C}(5)$ is trans as is the stereochemistry at $C(4)$ and $C(5)$. A strong hydrogen bond is formed between the $\mathrm{P}=\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$ related by the twofold screw axis.

Introduction. The title compound represents a novei class of 2 -phospholene-3-ole structures which may serve as starting materials for C-P heterocycles with possible biological activity. Certain phospholenes have shown biological activity [Vizel, Zvereva, Ivanovskaya, Studentsova, Dunaev \& Berim (1965); Arbuzav, Vizel, Zvereva, Studentsova \& Garaev (1966)] and the fact that alkylation appears to be sterically influenced (Purdum \& Berlin, 1974) should stimulate interest. A preliminary report of this structure has been published (Washecheck, van der Helm, Purdum \& Berlin, 1975).

The compound was recrystallized from ethanolwater mixture. A prismatic crystal, approximately $0.5 \times 0.3 \times 0.15 \mathrm{~mm}$, was used for data collection and unit-cell determination. The unit-cell dimensions were determined at $27^{\circ} \mathrm{C}$ from the $+2 \theta$ and -2θ values of 30 reflections distributed through all octants of recip-

[^0]rocal space. The data showed definite systematic absences of $0 k 0, k=2 n+1$ and $00 l, l=2 n+1$ with very weak or zero intensities, and inconsistent from crystal to crystal for $h k 0, k=2 n+1$ and $0 k l, l=2 n+1$ indicating a probable space group of $P c 2_{1} b, P c m b$ or $P 22_{1} 2_{1}$. Space group $P c 2_{1} b$ was later confirmed by the structure solution when an attempted refinement in space group $P 22_{1} 2_{1}$ failed. The intensities of 1852 reflections [1766 reflections had $I>2 \sigma(I)$] with $2 \theta<150^{\circ}$ were measured using $\mathrm{Cu} K \alpha$ radiation ($\lambda=1.5418 \AA$) and $\theta-2 \theta$ scans on a Nonius CAD-4 automatic diffractometer. Absorption corrections ($\mu=14 \cdot 7 \mathrm{~cm}^{-1}$) and Lorentz and polarization corrections were applied. The program used for the absorption corrections was that of Coppens, Leiserowitz \& Rabinovich (1965) and employs the method of Gaussian integration. In this case 216 sampling points were used and the correction factor ranged from 0.5779 to 0.8245 .
The structure was solved using conventional Patterson and Fourier techniques. The hydrogen atoms were located in a difference Fourier map based on the refined positions of the P, O and C atoms. The structure was refined using block-diagonal least-squares techniques (Ahmed, 1966) with anisotropic temperature factors for the non-hydrogen atoms and isotropic temperature factors for the hydrogen atoms. The refinement was terminated when all shifts for the non-hydrogen atoms were less than 0.6 of the corresponding estimated standard deviation. The error in an observation of unit weight, $\left[\sum w\left(F_{o}-F_{2}\right)^{2} /(m-n)\right]^{1 / 2}$, where $m=$ the number
of observations and $n=$ the number of parameters, is $1 \cdot 42$. Scattering factors for P, O and C atoms were taken from International Tables for X-ray Crystallography (1962) and those for H atoms from Stewart, Davidson \& Simpson (1965). The R value for all data based on the final parameters (Tables 1 and 2) was $0 \cdot 035$.* The weights of F in the least-squares calculations were calculated from $\sigma(I)$ which were determined from counting statistics (van der Helm, Ealick \& Burks, 1975). A final analysis of the structure factors does not show a significant variation of $w \Delta F^{2}$ with either F_{o} or $\sin \theta / \lambda$.

Discussion. An ORTEP drawing of a single molecule is given in Fig. 1, bond lengths in Fig. 2 and bond angles

[^1]Table 2. Positional parameters $\left(\times 10^{3}\right)$ and isotropic thermal parameters $\left(\AA^{2}\right)$ for hydrogen atoms

	x	y	z	B
H(C4)	433 (3)	-26(4)	-19 (1)	$4 \cdot 1$ (6)
$\mathrm{H}(\mathrm{C} 5)$	120 (4)	9 (4)	27 (1)	$5 \cdot 6$ (7)
$\mathrm{H}(\mathrm{C} 4 a) \mathrm{A}$	483 (3)	-212 (4)	53 (1)	$4 \cdot 3$ (6)
$\mathrm{H}(\mathrm{C} 4 a) B$	301 (3)	-244 (5)	23 (1)	$6 \cdot 0$ (7)
$\mathrm{H}(\mathrm{C} 4 a) \mathrm{C}$	318 (4)	-148 (5)	80 (1)	$6 \cdot 4$ (8)
$\mathrm{H}(\mathrm{C} 5 a) A$	171 (4)	0 (5)	-68 (1)	$7 \cdot 4$ (9)
$\mathrm{H}(\mathrm{C} 5 a) B$	255 (4)	191 (5)	-60 (1)	$7 \cdot 1$ (10)
$\mathrm{H}(\mathrm{C} 5 a) \mathrm{C}$	55 (4)	144 (5)	-50 (1)	$7 \cdot 0$ (9)
$\mathbf{H}(\mathrm{Cl1}) A$	115 (3)	345 (3)	138 (1)	$4 \cdot 3$ (6)
$\mathrm{H}(\mathrm{C} 11) B$	-20 (3)	255 (4)	98 (1)	$4 \cdot 8$ (6)
H(C13)	-102 (3)	-9 (4)	112 (1)	$4 \cdot 4$ (6)
H(C14)	-81 (3)	-230 (4)	156 (1)	$5 \cdot 8$ (7)
H(C15)	123 (3)	-310 (3)	220 (1)	$4 \cdot 1$ (6)
$\mathrm{H}(\mathrm{C} 16)$	324 (3)	-112 (4)	241 (1)	$6 \cdot 2$ (7)
H(C17)	313 (3)	132 (4)	191 (1)	$4 \cdot 9$ (6)
H(C22)	360 (5)	522 (6)	111 (2)	8.9 (10)
H(C23)	499 (4)	660 (4)	170 (1)	$6 \cdot 9$ (9)
H(C24)	731 (4)	555 (5)	232 (2)	$8 \cdot 3$ (10)
H(C25)	830 (4)	308 (5)	216 (1)	$7 \cdot 4$ (10)
H(C26)	682 (3)	163 (4)	149 (1)	$4 \cdot 8$ (6)
H(O3)	692 (4)	-19 (5)	25 (1)	$7 \cdot 2$ (9)

Table 1. Positional parameters $\left(x \times 10^{4}, y \times 10^{4}, z \times 10^{5}\right)$
and isotropic thermal parameters $\left(\times 10^{4}\right)$ for P, C and O atoms
The standard deviation for last digit is in parentheses. Thermal parameters are of the form: $\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}+\cdots+2 U_{23} k l b^{*} c^{*}\right)\right]$.

	\boldsymbol{x}	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
P	$2346 \cdot 7$ (6)	2524-1 (11)	5661 (2)	369 (2)	353 (2)	444 (3)	62 (3)	68 (2)	85 (3)
C(2)	4375 (3)	2182 (3)	8107 (9)	414 (10)	351 (12)	397 (9)	33 (9)	41 (8)	10 (8)
C(3)	4988 (3)	921 (3)	5395 (8)	406 (10)	373 (11)	397 (9)	48 (9)	9 (8)	22 (9)
C(4)	3840 (3)	-71 (3)	1993 (9)	457 (11)	399 (12)	408 (9)	24 (10)	24 (9)	-41 (10)
C(5)	2158 (3)	768 (3)	1438 (10)	406 (11)	476 (14)	479 (12)	-22 (11)	-7 (9)	47 (11)
C(4a)	3648 (4)	-1672 (3)	4772 (12)	695 (16)	373 (15)	658 (15)	27 (14)	97 (13)	-20 (11)
C(5a)	1662 (4)	1128 (5)	-4549 (11)	567 (15)	792 (23)	543 (15)	-27 (16)	- 110 (12)	48 (15)
C(11)	906 (3)	2413 (4)	11427 (11)	519 (12)	490 (15)	629 (15)	133 (13)	205 (10)	127 (15)
C(12)	1004 (3)	877 (3)	14575 (9)	451 (11)	444 (13)	411 (9)	75 (10)	121 (9)	56 (10)
C(13)	-128 (3)	-286 (4)	13626 (10)	449 (12)	644 (17)	508 (12)	-33 (13)	-18(10)	123 (13)
C(14)	-26 (4)	-1702 (4)	16376 (12)	710 (17)	584 (16)	543 (15)	-166 (16)	-14 (12)	96 (14)
C(15)	1214 (4)	-1965 (4)	20103 (13)	901 (20)	569 (17)	523 (15)	- 25 (16)	-63 (14)	129 (13)
C(16)	2350 (4)	-805 (4)	21162 (11)	708 (16)	711 (20)	435 (12)	32 (16)	-90 (11)	79 (14)
C(17)	2255 (3)	607 (4)	18410 (9)	545 (13)	569 (16)	408 (12)	- 53 (13)	27 (9)	-54 (11)
C(21)	5209 (3)	3181 (3)	12243 (9)	483 (11)	386 (11)	405 (12)	-25 (10)	115 (9)	-24 (9)
C(22)	4677 (4)	4716 (3)	13160 (11)	689 (16)	411 (13)	590 (15)	4 (13)	144 (13)	-60 (11)
C(23)	5423 (5)	5632 (4)	17192 (13)	1081 (27)	480 (17)	726 (18)	-73 (18)	236 (18)	- 223 (16)
C(24)	6691 (5)	5055 (5)	20323 (12)	1037 (25)	715 (22)	538 (15)	-320 (20)	106 (16)	- 222 (16)
C(25)	7240 (4)	3541 (4)	19478 (12)	724 (17)	761 (22)	520 (15)	-195 (17)	-26 (13)	-78 (15)
C(26)	6492 (3)	2632 (4)	15480 (10)	575 (13)	473 (14)	473 (12)	-24 (14)	1 (9)	-40 (13)
$\mathrm{O}(1)$	2117 (2)	4039 (3)	2595 (8)	492 (9)	470 (10)	614 (9)	97 (9)	97 (7)	192 (9)
$\mathrm{O}(3)$	6563 (2)	486 (2)	5756 (7)	434 (8)	575 (12)	514 (9)	155 (8)	-62 (7)	-134 (8)

Fig. 1. Stereo view of a single molecule (Johnson, 1965).

Fig. 2. Bond distances and numbering scheme.

Fig. 3. Bond angles. Additional bond angles are $\mathrm{C}(2)-\mathrm{P}(1)-$ $\mathrm{O}(1)=114 \cdot 9(1)$ and $\mathrm{C}(5)-\mathrm{P}(1)-\mathrm{C}(11)=109 \cdot 2(1)^{\circ}$.
in Fig. 3. The range of $\mathrm{C}-\mathrm{H}$ bond lengths is 0.84 to $1.11 \AA$ with an average value of $1.00 \AA$. The fact that the molecule exists in the enol form is evident in the $\mathrm{C}(2)-\mathrm{C}(3)$ bond distance of 1.357 (3) \AA, which is very close to the value expected for a double bond, location of a hydrogen atom bonded to $\mathrm{O}(3)$ and the fact that the sums of the bond angles about $\mathrm{C}(2)$ and $\mathrm{C}(3)$ are each $360 \cdot 0^{\circ}$ indicating $s p^{2}$ hybridized atoms. The slight lengthening of the double bond may be correlated with an average deviation of the torsion angles about the $C(2)-C(3)$ bond of $9 \cdot 1^{\circ}$ from the expected values for a planar double bond. The phenyl group attached to $\mathrm{C}(2)$ is not coplanar with the phospholene ring but is tilted away from atom $O(3)$ as indicated by the torsion angle $\mathrm{P}(1)-\mathrm{C}(2)-\mathrm{C}(21)-\mathrm{C}(26)=156 \cdot 9^{\circ}$. This results from a close intramolecular contact of $2.423 \AA$ between $\mathrm{O}(3)$ and $\mathrm{H}(\mathrm{C} 26)$. The repulsion resulting from this contact may also be responsible for the non-planarity of the double-bond system. The attachment of the

Table 3. Least-squares plane through the phospholene ring and distances from the plane
Equation of the plane is: $2 \cdot 644 x+4 \cdot 443 y-19 \cdot 041 z=0.638$, where x, y, and z are fractional coordinates.

	$d(\AA)$		$d(\AA)$
$\mathrm{P}(1)$	0.026	$\mathrm{C}(5)$	0.000
$\mathrm{C}(2)$	-0.055	$* \mathrm{O}(3)$	0.217
$\mathrm{C}(3)$	0.063	$* \mathrm{C}(21)$	-0.179
$\mathrm{C}(4)$	-0.034		

* Not included in calculation of least-squares plane.
benzyl group is staggered with respect to $\mathrm{P}=\mathrm{O}$ as can be seen by the value of $177 \cdot 2$ for the torsion angle $\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{C}(12)$. The attachment of the benzene ring to atom $\mathrm{C}(11)$ is tilted from perpendicular by $11 \cdot 4^{\circ}$. The stereochemistry of the methyl groups attached to $\mathrm{C}(4)$ and $\mathrm{C}(5)$ is trans and that of methyl group $C(5)$ and the benzyl group is also trans. Torsion angles in the phospholene rings are $\varphi_{1}=7.3^{\circ}, \varphi_{2}=$ $-11 \cdot 4^{\circ}, \varphi_{3}=10 \cdot 4^{\circ}, \varphi_{4}=-3.8^{\circ}$ and $\varphi_{5}=-1.7^{\circ}$ where φ_{i} is the interior torsion angle about the bond joining atoms i and $i+1$. The equation of a least-squares plane passing through the five-membered ring and distances of several atoms from that plane are given in Table 3. The near-planarity of the phospholene ring can be seen and the non-planarity of the double bond is also evident.

The -OH group on $\mathrm{C}(3)$ is involved in a strong hydrogen bond, joining symmetry-related molecules about the twofold screw axis. The $\mathrm{O}(1) \cdots \mathrm{O}(3)$ distance is $2.595 \AA, \mathrm{O}(3)-\mathrm{H}(\mathrm{O} 3)$ is $1.03(4) \AA$, the $\mathrm{O}(1) \cdots \mathrm{H}(\mathrm{O} 3)$ distance is $1.590 \AA$ and the $\mathrm{O}(1) \cdots \mathrm{H}(\mathrm{O} 3)-\mathrm{O}(3)$ angle is 165.5° [atoms $\mathrm{H}(\mathrm{O} 3)$ and $\mathrm{O}(3)$ are transformed by $\left.1-x, \frac{1}{2}+y,-z\right]$.

Part of the research was supported by grant CA17562 from the National Institutes of Health. We also thank the University of Oklahoma for providing computer time.

References

Ahmed, F. R. (1966). SFLS program, NRC-10, National Research Council, Ottawa.
Arbuzav, B. A., Vizel, A. O., Zvereva, M. A., Studentsova, I. A. \& Garaev, R. S. (1966). Dokl. Akad. Nauk SSSR, Ser. Khim. pp. 1848-50.
Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
International Tables for X-ray Crystallography (1962). Vol. III, p. 202. Birmingham: Kynoch Press.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Purdum, W. R. \& Berlin, K. D. (1974). J. Org. Chem. 39, 2904-2911.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Van der Helm, D., Ealick, S. E. \& Burks, J. E. (1975). Acta Cryst. B31, 1013-1018.
Vizel, A. O., Zvereva, M. A., Ivanovskaya, K. M., Studentsova, I. A., Dunaev, V. G. \& Berim, M. G. (1965). Dokl. Akad. Nauk. SSSR, 160, 826-828.

WASHECHECK, D. M., van der Helm, D., Purdum, W. R. \& Berlin, K. D. (1974). J. Org. Chem. 39, 3305-3307.

[^0]: * Supported, in part, by N. I. H. Development Award K4-GM-42572.

[^1]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31460 (10 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CHI 1NZ, England.

